
The Extended Crescent Visibility Criterion 
 

Abdurrahman ÖZLEM 
Istanbul, Turkey 

E-mail: vakitmatik@yahoo.com.tr 
 

 
Abstract: Crescent visibility has been a concern for determining 

the start of any lunar month. Various criteria have been offered 

by the astronomers since the Babylonians. The indigenous 

criterion proposed in this paper uses the two reliable 

parameters, altitude and crescent width, and makes it possible to 

estimate the visibility for any phase of the Moon, not just limited 

to thin crescents. Though very simple, the algorithm presented 

here produces rather consistent results. Various visibility graphs 

are included. In addition is introduced a tool for demonstration. 
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1. INTRODUCTION 

The first visibility of the waxing crescent has always been a 
matter of interest for many societies. The word “month” has 
the same root as the word “Moon” and, in a lunar calendar, a 
month is defined as the time slice between two maiden 
appearances of the youngest crescent. A month for example in 
the Islamic calendar begins on the day following the first 
evening during which the waxing crescent becomes visible. 
Thus, for the preparation of a lunar calendar in advance, it is 
necessary to constitute valid formulae for the computational 
determination when a crescent may become visible. 
Astronomers therefore have strived to express various lunar 
visibility criteria since the Babylonian age. 

This paper will introduce an alternative criterion for the 
naked-eye visibility of the lunar crescent. To aid the 
comprehension of the case, the physical perception 
mechanisms for the Moon’s visibility will be presented first. 
Historical background about visibility criteria will then be 
explained briefly. After expressing the methodology of the 
new simplified criterion, the application developed for the 
demonstration of this criterion will be explained. 
Consecutively, the results obtained by this tool and their 
comparisons with other criteria will be summarized. 

We start out by elaborating the generic lunar visibility 
problem. 

2. PERCEPTION OF THE CRESCENT 

For any object with sufficient size to be visible in the sky, 
there must be sufficient contrast between the object and the 

surrounding background [1]. Contrast is defined as the ratio 
of the object’s (Moon’s in this case) illumination to the sky’s 
brightness [2]. So the brightness of the Moon must be a 
certain level higher than the sky brightness at that azimuth 
and elevation. 

The angle between the Sun-Moon and Earth-Moon lines is 
called elongation. The Moon phase angle is defined as the 
projection of this angle onto the ecliptic plane, i.e. the 
difference between the celestial longitudes of the Earth and 
the Moon. At the time of conjunction when the celestial 
longitudes are the same, the Moon phase angle will be zero 
and elongation becomes a minimum. This minimum 
elongation will be an angle (Moon declination angle at 
conjunction) bearing a value between +5.15° and -5.15°, 
since Moon’s orbital plane is tilted at 5.15° with respect to 
the ecliptic (see Figure 1). A solar eclipse occurs if this 
elongation is smaller than the Moon parallax, approx. 1°. 

 

 

Figure 1 – Moon Declination 

While the Moon in its gibbous phase is also visible during 
daytime, a thin crescent can only be seen after sunset, since 
the sky is so bright before the sunset that a new crescent is 
impossible to detect. As the Sun depresses further below the 
horizon, the sky brightness uniformly decreases. The 
perceived brightness of the illuminated portion of the Moon 
(crescent) depends upon his elongation; the sky brightness, on 
the other hand, is mainly related to the position of the Sun. 
This fact implies that the lower the Sun moves, the more will 
be the contrast between the thin crescent and the twilit sky. 
Nevertheless, the waxing crescent will also set soon after the 
Sun. The time lag between sunset and moonset depends on 
the Sun-Moon elongation and the latitude, as depicted in 
Figure 2 When the Moon approaches the horizon, adverse 
effects like atmospheric refraction as well as clouds, fog, dust 
or pollution will diminish the brightness of the Moon and 
deteriorate the contrast [3]. 



 

Figure 2 – Sun/Moon Trajectory 

A thick crescent, lagging a sufficient amount behind the 
Sun, can be distinguished above the horizon during a certain 
period after sunset until it vanishes within the last few degrees 
of elevation. The younger the crescent is, the later can it be 
detected and the earlier it will disappear. There will be a 
limiting condition, where a crescent can just be identified for 
a very few minutes. This boundary is called the first (earliest) 
visibility of a crescent. Such a crescent is also perceived as 
shorter than full 180°, as discovered by Danjon, because the 
thinner edges will fall below the physiological visibility 
threshold [12][20]. The most favorable instant for the 
visibility is denoted as the “best time” and the least 
elongation for a crescent to become visible is expressed by 
the “Danjon limit”. There will also be a unique place on Earth 
for each lunation, where the crescent can be first observable 
globally. The Sun/Moon trajectory and position at the best 
time and place, calculated according to the novel criteria 
proposed in this paper, are displayed in Figure 2. Methods for 
the determination of the best time and the coordinates of the 
best place will be presented later. 

3. PREVIOUS WORK 

As stated in the previous section, the crescent must be 
brighter than the sky in order to be visible by the observer. 
This implies that any visibility criterion has to manifest at 
least two parameters; one for the crescent illumination, the 
other for the sky brightness [4]. Nevertheless, in some cases 
(especially in the ancient times), also single parameter 
approaches have been practiced.  

We shall summarize the basic parameters found in the 
literature, as follows: 

3.1 Lag 

Lag, which is expressed as the time delay in minutes 
between the sunset and the moonset, is one of the oldest 
parameters, used since the Babylonian era. As a fact, the more 
the lag, the bigger will be the elongation. A greater elongation 
in turn leads to a thicker crescent, implying higher 

illumination. On the other hand, a bigger lag means that the 
Sun goes deeper below horizon before the Moon vanishes, 
resulting in a darker sky. In general, the required contrast will 
depend upon the lag. However, the contrast cannot be 
determined by the lag only; the illumination as well as the sky 
brightness is related to other parameters also, especially the 
latitude. In high latitudes, the Sun & Moon trajectories 
become more decumbent, which means that the lag increases 
for the same elongation. 

3.2 Age 

Age, the other simple parameter, is defined as the time in 
hours passed since the conjunction. Age is only a moderate 
indication of the crescent illumination, since it considers 
neither the speed / distance of the Moon, nor the declination 
angle. It hardly ever gives any information about sky 
brightness. 

3.3 Altitude 

The altitude difference between the Sun and the Moon is a 
more recent parameter. It is also known as Arc of Vision 
(ARCV). For a specific point on the sky (azimuth / elevation), 
the brightness gradually decreases as the Sun goes down. 
There is also a brightness gradient on the sky in vertical 
direction for a specific time, i.e. as one looks downwards 
from the zenith to the horizon, the brightness will grow with 
increasing zenith angle. Hence we can deduce that the 
brightness of the sky at the elevation of the Moon is a direct 
function of the ARCV. Therefore the altitude is a very good 
parameter to represent the sky brightness. In Figure 3, the 
western sky brightness is depicted as a function of the solar 
depression angle [11]. 

 

Figure 3 – Sky Brightness vs. Sun Altitude 



Alternative parameters representing the altitude can be: 

- Moon altitude at sunset 

- Moon altitude when the Sun is 4° below horizon, 
which is regarded as nearly the best time [8]. 

- Apparent altitude of the crescent’s lower limb 

3.4 Azimuth 

Sun-Moon azimuth difference is a common parameter 
generally used together with the altitude. This represents the 
crescent illumination. It is commonly abbreviated as DAZ 
(Delta Azimuth). In fact, DAZ and ARCV constitute the two 
orthogonal angles (see Figure 4) and, using the spherical 
trigonometry, one can write [16]: 

cos(ARCL) = cos(ARCV) * cos(DAZ) 

ARCL stands for Arc of Light, which is anonymous to Sun-
Moon separation, or elongation. 

 

Figure 4 – Relation between ARCV, DAZ and ARCL 

Azimuth and altitude together are used as two common 
parameters by most recent astronomers. The visibility criteria 
are generally shown in a graph (Figure 5). Using the above 
formula, we should note that for a given ARCL (elongation), 
ARCV (altitude) will increase as DAZ decreases. When DAZ 
= 0, ARCL will be maximum and equal to ARCV. The 
maximal Moon altitude for a specific elongation corresponds 
to minimal sky brightness for a given Moon illumination, 
maximizing the contrast. Hence the latitude where the 
azimuth becomes zero (the Moon is directly above the Sun) 
will be the unique place with the best visibility (see Figure 2). 

The y-axis of the graph in Figure 5 (where DAZ = 0 and 
ARCL = ARCV) shows the minimum possible elongation for 
naked-eye visibility. Except for Fotheringham, this angle has 
a value of 10-11° based on statistical observation data. 

 

Figure 5 – Azimuth/Altitude Criteria 

Ilyas extended this curve [9] in 1988 for large azimuth 
differences (high latitudes), as shown in Figure 6, which is 
known as Ilyas (C) criterion. 

 

Figure 6 – Composite Extended Criterion of Ilyas 

3.5 Elongation 

Elongation has a strong relationship with the Moon 
illumination: Mathematically, the illuminated portion of the 
disc is given by the formula: 

Illumination = ½ * [1 - cos(Elongation)] 

For small angles, the illumination is proportional to the 
square of the elongation. As can be seen from the following 
equation [15], the elongation takes the declination angle into 
consideration: 

cos(Elongation) = cos(Phase) * cos(Declination) 

Ilyas, in 1984, plotted a curve with Moon’s altitude vs. 
elongation [10], denoted as Ilyas (A). The Royal Greenwich 
Observatory (RGO) also uses altitude & elongation. Caldwell 
recently presented a paper explaining the dependence of 
crescent visibility on lag & elongation [1]. In Indonesia, lag, 
elongation, altitude and azimuth are used in combination [17]. 



3.6 Crescent Width 

Although elongation is a direct representation for the 
illumination of a disc, it lacks the size. Since the distance of 
the Moon to the Earth is not constant due to the eccentricity 
of the Moon’s orbit, its apparent diameter changes 
continually. The central width of the crescent is directly 
proportional to the illuminated area observed and therefore 
should be incorporated to optimally represent the illumination 
criterion. The crescent width subtends an angle small enough 
to write the following approximation: 

Width ≈ 11950 * Illumination / Moon Distance 

In this formula, the crescent width is in arc-minutes and the 
Earth-Moon distance is in thousands of kilometers. 

Bruin developed a theoretical graph in 1977, plotting the 
Moon altitude and ARCV versus Sun depression using 
different values of crescent width, as shown in Figure 7. For 
example with a crescent width of 0.25’ and ARCV of 10°, the 
crescent will remain visible as long as the Sun is between 
2~8° of depression (points A and B). Schaefer adopted this 
model incorporating atmospheric correction factors [13]. 

 

Figure 7 – Bruin’s Criterion 

Yallop, based on 295 observations, offered in 1997 a 3rd 
degree polynomial using ARCV and crescent width (W), 
where q is the visibility factor [15]: 

q = ARCV - 11.8371 + 6.3226*W - .7319*W
2 
+ .1018*W

3
 

Visibility factor q is divided into 4 zones, ranging from 
“visible with naked eye” to “not visible even with optical 
aid”. This criterion produces a curve with the known shape as 
in Figure 5; ARCV decreases with increasing DAZ (growing 
W). 

Odeh, after investigating 737 records, proposed in 2006 to 
modify the offset value of the Yallop’s equation [4]. 

Similarly, Qureshi attempted in 2005 to fit polynomials of 
3rd degree for the available observation records [6]. 

3.7 Ease of Visibility in General 

Criteria with two parameters investigated so far, namely the 
one for crescent illumination and the other for sky brightness, 
has been formulated by Hoffman by combining them into an 
ease-of-visibility parameter v, where d represents the sky 
darkness and b the Moon’s illumination: 

v = d + k * b 

He then defined a normalized ease-of-visibility parameter 
q. Values < 0 will mean “crescent impossible to see” and 
values > 1 will have a meaning of “certainly visible” [2]. 
Variables v0 and v1 are the ease-of-visibility values for the 
lower and upper limit, respectively: 

 q = (v – v0) / (v1 – v0) 

He next asserted that the Moon will be visible if the 
following condition is met: 

hs < x * q + hS0 ± σhS0 

The parameter hs is the instantaneous Sun altitude, hs0 the 
Sun altitude at the lower visibility limit and x an empirically 
fitted constant. 

Note that while the criteria mentioned before describe the 
conditions for the earliest visibility of a crescent, Hoffman’s 
rule should be valid for a broad range of altitudes, suitable for 
the aim of our work. 

After elaborating the parameters and their pro-cons, we 
deduced that the most two suitable parameters would be the 
crescent width (W) for the crescent illumination and the 
altitude (ARCV) for the sky darkness. Hoffman applied in his 
work the square-root of the crescent width. Besides he used 
DALT instead of ARCV, which is the topocentric altitude 
difference. For small angles, DALT = ARCV - 1. We will 
denote the Sun altitude as S instead of hS and the topocentric 
Moon altitude as M. So we may write: 

v = DALT  + k * √W 
v = M - S + k * √W 

S < x*(M-S + k*√W – v0)/(v1–v0) + hS0 ± σhS0 



Assuming that: 

y = x/(v1–v0) 
z = y/(1+y) 

The inequalities become: 

y*M -(1+y)*S + y*k*√W > y*v0 - hS0 ± σhS0 
 z*M - S + z*k*√W > z*v0 - (hS0 ± σhS0)/(1+y) 

Hoffman suggested following values to be used with DALT 
and √W: 

k = 6.4 v0 = 11.3 
x  = 2.2 v1 = 16.3 
hS0 = -6.1 σhS0 = 1.43 

Hence we calculate y = 0.44 and z = 0.31. Thus we may 
write: 

0.31*M - S + 1.96*√W > 7.69 ± 0.99 

Following deductions can be made from this inequality:  

- For a given Moon altitude, the limiting Sun altitude 
should increase (more sky brightness) as the crescent 
width increases (more illumination); in order the 
visibility (contrast) to remain the same. 

- For a given Sun altitude, the limiting Moon altitude 
should decrease (more sky brightness) as the crescent 
width increases (more illumination); in order the 
contrast to remain the same. 

- For a fixed crescent width, the limiting Moon altitude 
should decrease (more sky brightness) as the Sun 
altitude decreases (less sky brightness); in order the 
contrast to remain the same. 

4. PROPOSED CRITERION 

The criteria discussed so far give successful results for thin 
crescents to test the earliest visibility. Except Ilyas, they are 
valid for W < 1’. Ilyas (C) extends it up to 2’, where the curve 
becomes nearly horizontal. This work aims to propose a 
visibility criterion, which can also be used for thicker 
crescents including daytime visibility, when the Moon is 
visible together with the Sun. 

We shall investigate the sky darkness change for broader 
altitude values and consider the atmospheric extinction which 
influences the Moon illumination. 

4.1 “Best Time” of Visibility 

The coefficient (slope) of M in the former Hoffman 
inequality, which equals to 0.31, tells us that for every degree 

increase in Moon altitude, 0.31 degree decrease in Sun 
altitude will be necessary to remain the sky darkness the 
same. This can also be verified on the graph in Figure 3. A 
horizontal line representing a fixed brightness level crossed 
by the θ=80º and =85º curves form a gap of about 1.5 degrees 
of Sun altitude, except for daytime. 

The earliest visibility of a waxing crescent occurs just after 
sunset, whereas the latest visibility of a vaning crescent is 
observed just before sunrise. During the sunset/sunrise, when 
the Sun is near the horizon, the Sun and Moon altitudes 
change in the same rate, such that ARCV remains constant. 
However, since their contributions to the sky brightness are 
different (nearly 1:3), the brightness level at the instantaneous 
Moon altitude decreases as they move down, increasing the 
contrast and favoring the visibility. Theoretically, the Moon 
would be best distinguished just before it sets. 

But it is well known that after a certain altitude, the Moon 
starts to fade until it disappears. Bruin’s graph visualizes this 
characteristic (Figure 7). For a crescent width of 0.25’, he 
proposed that the Moon will be just visible at S = -2° (point 
A), best visible at S = -4° (point C) and it will again vanish at 
S = -8° (point B). According to Bruin, the point of best 
visibility appears to be asymmetric nearer to point A. Bruin’s 
work shows that the best visibility point shifts to left as the 
crescent width increases. 

Yallop discovered that these best visibility points are 
located on a straight line (drawn in red) with a slope of 9/4, 
i.e. 9 * h = 4 * (h+s). h and s are the Moon and Sun altitudes, 
respectively, and h + s = ARCV. So he claimed that the “best 
time” of visibility occurs when 4/9 of the time between sunset 
and moonset has passed. He therefore asserted the best time 
for visibility as 4 * h = 5 * s. The recent visibility assessments 
of Yallop, Odeh, Qureshi and others, which include ARCV as 
the sky brightness parameter, assume this 4/9 time as the 
onset of visibility. 

Sultan, by making use of a photometric model, 
demonstrated in 2006, that the best visibility occurs at near M 
= 2.5° for elongations above 7° (Danjon limit), independent 
of ARCV. He related this discrepancy to the sight altitude. 

4.2 Atmospheric Extinction 

We will now explain the effect of extinction, which is the 
reason why the Moon fades as it approaches the horizon. 

Extinction is the decrease of the brightness of any sky 
object due to the growth of the optical thickness as the zenith 
angle increases. Figure 8 visualizes the change of optical 
thickness in kilometers with respect to observation angle in 
degrees [5]. This increase stems from the spherical shape of 
the atmosphere. The light rays travel a longer distance 
through the atmosphere as approaching the horizon. After 
some point, namely the maximum visibility point, the change 



of decrease in the object’s brightness exceeds the gain in the 
contrast and the visibility starts to decline.  

 

Figure 8 – Optical Path Length vs. Elevation 

Ilyas, in 1994, cited that the increased atmospheric 
extinction when the Moon is closer to the horizon should be 
compensated by a shift in altitude. Furthermore, he 
categorized all the existing criteria with two parameters as 4th 
order, and stated that the 5th order criterion should include 
extinction [9]. The attenuation to be compensated by an 
altitude shift can be expressed as F(θ), which is proportional 
to the air mass (optical path length) in the direction θ [19]. 

The visibility will deteriorate as the Moon altitude gets 
closer to zero; so the shift must be negative for decreasing M. 
Therefore we should incorporate a non-linear shaping-
function F(M) instead of the constant-slope 0.31*M, as to 
compensate for extinction. For very small Moon altitudes in 
the vicinity of the horizon, the slope should increase heavily, 
as to follow the optical path growth shown in Figure 8. 

The best contrast for visibility occurs when the slope of 
F(θ) is unity; i.e. visibility is nearly constant as the Moon and 
the Sun travel down together. The point C of the h+s curve in 
Bruin’s graph clearly visualizes this fact; it is the moment of 
best visibility and the slope of the related h curve at that 
moment is unity. 

If the reason for the best visibility phenomenon is the 
atmospheric attenuation, it should not be related to the 
crescent width; it is function of the Moon altitude only. Hence 
the modeling by Sultan seems reasonable. However, the best 
visibility is neither a function of altitude, at least for the first 
few kilometers, because the mass density change has a more 
or less constant slope according to the Standard Atmosphere 
Model. So we will assume the maximum contrast to appear at 
M = 2.5° for all conditions.  

Thus we will adjust (empirically fit) our shaping-function 
such that its slope will be unity at the best visibility point, i.e. 
M =2.5°: 

F(M) = -0.28 / tan(M + 1.5) 

The slope of the shaping-function is 0.38 at M = 5° and it 
decreases for increasing M (Figure 9). We will modify the 
former Hoffman equation such that our visibility criterion 
conforms to the available observation records and also to the 
daytime visibility observations, as follows: 

F(M) - S + 6 * √W > 4.9 

 

Figure 9 – Shaping-Function F(M) and its Slope 

The coefficient of √W is here larger as compared to the 
Hoffman’s findings. This should be caused by the 
introduction of F(M) which looses slope as W grows 
(increasing DAZ and decreasing ARCV). This attenuation is 
now compensated by a larger gain of √W. 

4.3 Daytime Visibility 

Figure 3 shows that the sky brightness flattens when the 
Sun altitude becomes positive. It implies that the brightness 
will remain constant for some value of Sun altitude, which 
can also be deduced from Figure 8. We will assume this 
corner angle as 5°, where the optical path nearly doubles. 
This is also the value taken for the “fading” limit of the Sun 
(start of makrouh timing). So if the Sun altitude is greater 
than 5°, the sky brightness is almost constant and the crescent 
visibility (contrast) will be a function of the Moon altitude 
only, for a fixed crescent width. The visibility will enhance a 
little for higher Moon altitudes, because the sky brightness 
diminishes as approaching the zenith. So if we limit the Sun 
altitude to 5° in our inequality, the daytime visibility will be 
affected by F(M) only, which mimics this loose dependency 
of the brightness to the Moon altitude. 

Another issue is the crescent width: When the thickness 
exceeds a critical visual angle and the Moon cusps become 



resolvable by the eye, the width dependency of the visibility 
ceases and the necessary contrast will be almost constant. 
Sultan’s model gives the limiting contrast roughly as 0.003 
and the corner angle as 5 arc-minutes for daytime sky 
brightness [20]. So we will limit the crescent width to 5’ in 
our criterion. With the consideration of daytime visibility, the 
correspondent stipulation we offer will be as follows: 

-0.28 / tan(M + 1.5) – min(S,5) + 6 * √min(W,5) > 4.9 

In any case, the crescent will not be visible when its 
apparent upper limb goes under the horizon. This implies that 
the topocentric Moon altitude should roughly be greater than 
-0.5°. The exact value depends on the crescent width as well 
as the latitude of the observer sight. 

4.4 Effect of Height 

With increasing height above sea level, air density and 
optical path length decline, lowering the scattering and 
diminishing the sky brightness for all zenith angles. Since the 
Moon illumination is not affected, the contrast will be higher, 
favoring the visibility. It is a common practice to climb a 
nearby mountain in order to witness the first emergence of the 
thinnest crescent. Note that in March 2002 on a sight at 2,200 
meter, the crescent with ARCL = 8.6° has been distinguished 
[14]. Similarly, calculation using a photometric model results 
in a minimum ARCL = 8.5° for 2,000 m height [7]. 

The apparent horizon shifts down an angle of E with 
increasing height above sea level. If S, M and E are small 
enough, the effect of height can be approximated to a Sun 
altitude shift equal to E, which should be added to our 
visibility equation: 

E = arccos(R / (R + H)) 

Here R denotes the Earth radius and H the height of the 
observer’s sight. This height model tells us that the Danjon 
limit could be reached at a height of 4,000 m. 

4.5 Probability of Visibility 

The q-value defined by Yallop to quantify the ease of 
visibility has a minimum value of 0.216 for “easily visible” 
and a maximum value of -0.014 for “optical aid to find the 
crescent” [6]. The difference is 0.23 which corresponds to 2.3 
degrees. This spread reflects the uncertainty related to the 
observations and incorporates atmospheric conditions as well 
as observers’ capabilities. Ilyas [9] and Schaefer [13] also 
investigated this effect and found a similar spread of ±1°. In 
the Hoffman’s equation, this spread represented with the 
coefficient ± σhS / (1+y), which is calculated as ± 0.99°. 
Therefore we will take the spread as 2°. 

Accordingly, we incorporate the percent probability (P) 
into our criteria and the final criterion becomes: 

-0.28/tan(M+1.5)–min(S,5)+6*√min(W,5)+arccos(R/(R+H))–P/50 > 3.9 

The resulting visibility algorithm is sketched below in 
Figure 10: 

 

Figure 10 – Flowchart of Proposed Visibility Algorithm  

The algorithm claimed can be plotted on an altitude graph, 
as to compare to Bruin’s analysis. Figure 11 and 12 are the h 
and h+s graphs, respectively, for a bunch of W values. It can 
be marked in Figure 11 that the slope of each curve is unity at 
h = 3.5° (M = 2.5°). The dotted line in Figure 12 is the 
corresponding h = 3.5° condition, where the visibility is 
maximum. 

The curves are extended up to s = -5°, namely 5 degrees 
above horizon, to display daytime visibility. A 3.5’ thick 
Moon appears to be visible during daytime if h > 11°, 
whereas a 5’ (and thicker!) Moon will be visible after h = 4°. 
The curves are sketched for sea-level at 50% probability; the 
visibility limit of a 2’ crescent at s = 0 (a.s.l.) may spread 
between altitudes 3° and 5.5°; or a gibbous can be observed 
(P = 50%) when h = 3° (M = 2°) at 1000 m above sea level. 

M > -0.5 

NOT VISIBLE 

− Time, date, time zone 

− Latitude, longitude 

− Altitude, probability (P) 

VISIBLE 

YES 

Calculate: 

− Sun Altitude (S) 

− Moon Altitude (M) 

− Crescent Width (W) 

− Sight Height (H) 

NO 

V = -0.28/tan(M+1.5) – min(S, 5) 

+ 6*√min(W, 5) 

+ arccos(R / (R + H)) – P / 50 

V > 3.9 

NO YES 



 

Figure 11 – h versus s Graph of Proposed Criterion 

 

Figure 12 – h+s versus s Graph of Proposed Criterion 

Those curves are consistent both with Yallop’s criterion 
and Sultan’s findings. In fact, Sultan’s photometric 
calculations show the theoretical best visibility point, where 
the Moon is visible for only an infinitesimal duration. On the 
contrary, the real naked-eye observations, as analyzed by 
Yallop, necessitate the Moon to stay visible for a sufficient 
amount, say 10 minutes, so that the observer scanning the sky 
surface can catch and definitely identify the hardly 
distinguishable crescent. The best visibility sights with low 
DAZ / high ARCV values are generally located at low to 
moderate latitude, where the Sun and Moon follow a steep 
trajectory. They move down approx. 2° in 10 minutes. So it 
will be necessary that the Moon is already visible at 2.5° + 2° 
= 4.5°. The 4/9 rule gives nearly the same topocentric altitude 
for small DAZ values (see Test Case #1). For a sight at higher  
(say 65°) latitude, where ARCV is smaller (say 8°) due to the 
slant trajectory, the Sun/Moon will move only 1° in 10 
minutes, such that the Moon must now be visible at 3.5° (see 
the Test Cases #2 & #3). Thus the 4/9 rule can be meaningful 

for determining the onset point of visibility for observations 
of crescents with W < 1’. 4/9 rule will fail for thick crescents, 
as the Moon altitude (h) at best visibility will approach to 
zero, which is not realistic because of atmospheric extinction. 

We additionally prepared an extended ARCV/DAZ graph 
in Figure 13 as to compare with Ilyas (C) criterion. The curve 
beyond DAZ = 30° is no more horizontal here, but decreasing 
with a lesser slope. 

 

Figure 13 – ARCV versus DAZ Graph of Proposed Criterion 

5. DEMONSTRATION TOOL 

To demonstrate the performance of the criterion and 
compare its results with the other criteria in literature, a tiny 
software program has been developed as a screen saver. 
EHILLE, this screen saver, can be easily configured to supply 
the necessary parameters (Figure 14). The height can be 10 
km at most, useful for airplane visibility simulation. 

 

Figure 14 – Configuration Screen of EHILLE 



The area of instantaneous visibility is painted on a 
Mercator map in real-time and the painted areas are then 
combined to form the cumulative area of visibility, which has 
the shape of a parabola. The vertex of this parabola represents 
the “best place” on Earth and the area widens westward, 
being symmetric on a roughly horizontal line. The position of 
the vertex is unique for each lunation. 

The software first computes the time of conjunction and 
shifts the Mercator map accordingly, such that the parabola 
lies more or less on the same place, its vertex being placed 
near the right border. Next is calculated the start time, which 
is nearly 3 hours before the first global visibility. Then the 
time is progressed with the entered speed and the visibility is 
checked continually. 

A relatively simple approach to draw the parabola would 
be to compute the visibility for each pixel (corresponding to a 
certain latitude & longitude) by executing the novel algorithm 
for every minute of time to be tested. However, this 
necessitates more than 500 million loops for a complete run, 
requiring a huge amount of calculation time. Therefore the 
software uses a smart search & track method which speeds up 
the process nearly 5,000-fold, as detailed below: 

Following the start, the software searches the best place on 
the map for visibility. Beginning from the center of the right 
border, a vertical search (up and down) is performed as to 
maximize ARCV to find the latitude where the Moon is 
vertical to the Sun (DAZ = 0). Consecutively, a horizontal 
search determines the longitude where the Moon altitude is 
2.5°, which is most favorable condition according to our 
algorithm. The combined search fixes the position with the 
highest possibility of visibility, and this position is tested & 
updated only once for each time using the algorithm. The 
time is then incremented one minute and the search is 
repeated. 

After detection of the maiden visibility at this best place, its 
coordinates and the local time are displayed on the screen. 
Now, the software checks the visibility in a vertical scan and 
saves the latitude limits of visibility, up and down, which 
forms the border points of the parabola. The connection line 
is then painted. This scan is repeated for neighbor longitudes, 
left and right, until visibility ceases. The instantaneous 
visibility area is formed thereby. For the next minute, the 
software shifts the former “best place” to left (¼°) and the 
horizontal scan is initiated from the saved points, 
considerably shrinking the computing time. 

A screenshot of the tool is displayed in Figure 15 to 
visualize the output. The graph looks very similar to those 
obtained through the famous Moon Calculator program by 
Dr. Monzur Ahmed. 

 

Figure 15 – Visibility Parabola Obtained by EHILLE 

6. COMPARISON & CONCLUSION 

6.1 Performance Evaluation 

Several cases will be analyzed in this section and compared 
with the criteria available in literature, as to verify the validity 
of the proposed method. The performance is to be evaluated 
by checking whether the error calculated for 50% probability 
remains within the ±1° spread. Since our criteria uses 
topocentric Moon elevation, we will consider the parallax of 
Moon (≈ 1°) in our calculations.  

The first four cases test the algorithm for crescent widths of 
0.25’ ~ 1’. ARCV and DAZ values are obtained by the 3rd 
degree polynomial offered by Yallop. The next three cases 
use the Ilyas (C) criterion (Figure 6), suitable for larger 
crescent widths. Except the last case, the Moon altitudes (M) 
have been selected by regarding the 4/9 rule, namely M = 
ARCV x 5/9 - 1. 

Case #1: W = 0.25’ (ARCV = 10.30°, DAZ = 0.29°) 

Regarding the 4/9 rule, the Moon altitude will be taken as 
4.72°. The necessary Sun depression is calculated as 4.47°. 
This gives an ARCV= 4.72°+4.47°+1° = 10.19°, that is 0.11° 
lower than the given value of 10.30. Hence the result has an 
error of -0.11°. 

Case #2: W = 0.5’ (ARCV = 8.85°, DAZ = 11.65°) 

The Moon altitude will be taken as 3.91°, using the 4/9 
rule. The necessary Sun depression is calculated as 3.61°. The 
result has an error of -0.32°. 

Case #3: W = 0.75’ (ARCV = 7.46°, DAZ = 16.31°) 

The Moon altitude will be selected as 3.15°. The necessary 
Sun depression is calculated as 3.15°. The result has an error 
of -0.17°. 



Case #4: W = 1’ (ARCV = 6.15°, DAZ = 19.80°) 

The Moon altitude will be selected as 2.41°. The necessary 
Sun depression is calculated as 2.99°. The result has an error 
of 0.26°. 

Case #5: ARCV = 5.5°, DAZ = 23° 

The Moon altitude will be taken as 2.06°. The crescent 
width is 1.30’ and the necessary Sun depression is calculated 
as 2.57°. The error is 0.13°. 

Case #6: ARCV = 5°, DAZ = 25° 

The Moon altitude will be taken as 1.78°. The crescent 
width is 1.51’ and the necessary Sun depression is calculated 
as 2.43°. The error is 0.20°. 

Case #7: ARCV = 4.5°, DAZ = 28° 

The Moon altitude will be taken as 1.5°. The crescent 
width is 1.86’ and the necessary Sun depression is calculated 
as 2.07°. The error is 0.07°. 

Case #8: 

Here we test the validity of the height compensation. For 
2,200 m height at a Moon altitude of 3.72°, our criterion 
gives the minimum ARCL = 8.66°. The error is 0.06°. 

Case #9: 

This is the 2nd height compensation validation, now against 
the photometric model. We take the Moon altitude as 2.5°. 
For 2,000 m height, our criterion gives the minimum ARCL = 
8.5° exactly, without any deviation. 

Despite the simplicity of the offered model, the obtained 
results seem well within the uncertainty spread: 

- Comparison with the Bruin’s graph exhibits a tight 
match up to W = 1’. Bruin’s work is regarded as 
consistent only for low latitudes (small DAZ and W). 
From mid latitudes onwards, great discrepancies are 
found in the results [10][15]. The graphs obtained by 
our work should be more accurate for a wider range of 
parameters. 

- Verification against Yallop’s criterion, based on a 
large observational dataset, also comes out to be 
successful for W < 1’. 

- Test with Ilyas (C) graph shows high consistency up to 
W = 2’. The flat portion beyond 2 arc-minutes of his 
graph is regarded as “overestimated” [10], so the curve 
produced according to our criterion seems to be more 
realistic. 

- The sight altitude compensation fits with the 
theoretical modeling and practical observations. 
Beyond 10 km however, it would show considerable 
deviation. 

- Limiting the Sun altitude at 5º and the crescent width 
at 5’ for daytime visibility results in sharp corners at 
those values. The real transition should rather be 
smooth. Nevertheless, several daytime observations 
performed at these conditions showed that the 
maximum deviation is within the uncertainty spread 
(typically less than 1º) and therefore it would not be 
worth to insert complicated correction terms. 

6.2 Discussion on Islamic Calendar 

When relying on local calendar, the Visibility Separator 
Parabola [3] clearly defines the new lunar month; the crescent 
is visible on the area within the parabola and the next month 
begins, whereas inhabitants on the area outside the parabola 
should wait for another day. However, if we consider a global 
calendar instead, the problem is how to set the International 
Lunar Date Line (ILDL), or better “Lunar Month Line”. An 
old but rational rule is test whether the crescent will be visible 
on the Earth before 23:59 (UTC), i.e. midnight at Greenwich. 
If yes, the following day is declared as the first day of the new 
Islamic month; if not, it will be the last day of the old month. 
This rule is regarded as reasonable because at that time Sun 
sets at the 90°W meridian and the crescent can only be seen 
west of that, where the Great Ocean resides. So if the crescent 
is observable after 23:59 (UTC), probably nobody will be 
able to see the crescent on that night; otherwise, at least some 
people on the west coasts of the American continent may see 
the crescent, and, since meanwhile the night still continues on 
a large majority of the Earth, that night and the following day 
can be declared as the beginning of the new lunar month. 
Figure 15 visualizes this case, where the visibility starts at 
23:47 (UTC), just before the midnight at Greenwich and the 
crescent is only visible in the far west of America. 



REFERENCES 

[1] John A. R. Caldwell, “Moonset Lag with Arc of Light 
Predicts Crescent Visibility”, 2012 

[2] Roy E. Hoffman, “Rational Design of Lunar-Visibility 
Criteria”, 2005 

[3] S. Kamal Abdali, “On the Crescent’s Visibility”, 1979 

[4] Mohammad Sh. Odeh, “New Criterion for Lunar Crescent 
Visibility”, 2006 

[5] Phil Ekstrom, “Blue twilight in a simple atmosphere”, 
2002 

[6] Muhammad Shahid Qureshi, “Computational Astronomy 
and the Earliest Visibility of Lunar Crescent”, 2005 

[7] Abdul Haq Sultan, “First Visibility of the Lunar Crescent: 
Beyond Danjon’s Limit”, 2007 

[8] John A. R. Caldwell, C David Laney, “First Visibility of 
the Lunar Crescent”, 1999 

[9] Mohammad Ilyas, “Lunar Crescent Visibility Criterion 
and Islamic Calendar”, 1994 

[10] Leong Wen Xin, “Lunar Visibility and the Islamic 
Calendar”, 2001 

[11] Wolfram G. Blättner,  Henry G. Horak, Dave G. Collins, 
and Michael B. Wells, “Monte Carlo Studies of the Sky 
Radiation at Twilight”, 1974 

[12] Bradley E. Schaefer, “Length of the Lunar Crescent”, 
1991 

[13] Bradley E. Schaefer, “Lunar Crescent Visibility”, 1996 

[14] Abdul Haq Sultan, “Hijri Calendar & Lunar Visibility: 
Physical Approach”, 2003 

[15] B. D. Yallop, “A Method for Predicting the First 
Sighting of the New Crescent Moon”, 1997 

[16] Rolf Krauss, “Babylonian Crescent Observation and 
Ptolemaic-Roman Lunar Dates”, 2012 

[17] Thomas Djamaluddin, “Re-evaluation of Hilaal 
Visibility in Indonesia”, 2001 

[18] Abdul Haq Sultan, “Best Time for the First Visibility of 
the Lunar Crescent”, 2006 

[19] R.O. Belokrylov, S.V. Belokrylov, M.G. Nickiforov, 
“Model of the stellar visibility during twilight”, 2011 

[20] Abdul Haq Sultan, “Explaining and Calculating the 
Length of the New Crescent Moon”, 2005 

 


